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L
A family A C [w]¥ is mad (maximal almost disjoint) if |a N b| < Y for
each distinct a, b € A, and it is maximal with this property, i.e., for each
z € [w]¥ there is a € A with |an z| = No.

For two mad families A and B, we say that B refines A if for each b € B
there is an a € A with b C* a.

Definition (Distributivity number (of P(w)/fin))

b is the least size of a collection of mad families such that there is no
single mad family refining all of them.
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A family A C [w]¥ is mad (maximal almost disjoint) if |a N b| < Y for
each distinct a, b € A, and it is maximal with this property, i.e., for each
z € [w]¥ there is a € A with |an z| = No.

For two mad families A and B, we say that B refines A if for each b € B
there is an a € A with b C* a.

Definition (Distributivity number (of P(w)/fin))

b is the least size of a collection of mad families such that there is no
single mad family refining all of them.

Claudio Agostini looked at a poster of mine about refining systems of mad
families at the YSTW 2023 in Miinster and asked me the following
question:

What is the least size of a collection of mad families such that each mad
family is refined by one member of the collection?
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In some sense, this question is asking for a number which is dual to b.

Let us consider things in a more general setting:
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Let us consider things in a more general setting:

A relational system is a triple (X,Y,C), where X’ and ) are sets, and
CC X x Y is a relation.
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In some sense, this question is asking for a number which is dual to b.
Let us consider things in a more general setting:

A relational system is a triple (X,Y,C), where X’ and ) are sets, and
CC X x Y is a relation.

Recall the corresponding bounding number and dominating number:

b(X,V,C) :=min{|X]| : X C X unbounded}
(X C X is unbounded : <= there is no y € Y with x C y for all x € X)

(X, V,C) :==min{|Y]: Y C )Y dominating}
(Y C Y is dominating : <= for each x € X thereis y € ) with x C y)

Well-known example:
b =b(w*,w, <¥)
0 = 0(w?, w¥, <*)
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Let us now rephrase b and its dual version:

h = b(madfam, madfam, <—f)

Question (Claudio Agostini)
What is b := d(madfam, madfam, <—rf)?

- - = = SR
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Let us now rephrase b and its dual version:

h = b(madfam, madfam, <—f)

Question (Claudio Agostini)
What is b := d(madfam, madfam, <—rf)?

Thanks to discussions with Aleksander Cieslak a bit more than two weeks
ago in Vienna, | realized that this is not the only way to “dualize” §. ..

...it depends on how we “define” b:

h= b" := b(madfam, [w]“, <se/)

T mid — = —a
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Let us now rephrase b and its dual version:

h = b(madfam, madfam, <—f)

Question (Claudio Agostini)
What is b := d(madfam, madfam, <—rf)?

Thanks to discussions with Aleksander Cieslak a bit more than two weeks
ago in Vienna, | realized that this is not the only way to “dualize” §. ..

...it depends on how we “define” b:

h= b" := b(madfam, [w]“, <se/) ’

Let us dualize this version:

Definition

ahb = d(madfam, [w]*, )
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Recall:

0h := ?(madfam, madfam, < f)
o := o(madfam, [u], )
Note that, trivially,

oh < 2° but

Dhb <c

_..i.e., in some sense, d’ is the lowered /flat/minor version of db. ..
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Let us generalize the definitions to arbitrary forcings:
h(P) = b(macs(PP), macs(P), < rer)

oh(P) = o(macs(P), macs(P), < ef)

b°(P) = b(macs(P), P, <)

26°(P) = o(macs(P), P, <)
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Let us generalize the definitions to arbitrary forcings:
h(P) = b(macs(PP), macs(P), < rer)

oh(P) = o(macs(P), macs(P), < ef)

b°(P) = b(macs(P), P, <)

26°(P) = o(macs(P), P, <)

= h(P(w)/fin) = b’ (P(w)/fin) (uses homogeneity of P(w)/fin)
oh = ah(P(w)/fin)
o’ = o’ (P(w)/fin)
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e oh(P) < 2% (for any forcing P)
o if P has the A\*-c.c., then oh(P) < |P|}

e for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we

have dh(P) < ¥ =¢
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e oh(P) < 2% (for any forcing P)
o if P has the A\*-c.c., then oh(P) < |P|}

e for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we

have dh(P) < ¥ =¢

If P has an antichain of size k, then k < dh(P).
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e oh(P) < 2% (for any forcing P)
o if P has the A\*-c.c., then oh(P) < |P|}

e for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we
have dh(P) < ¥ =¢

If P has an antichain of size k, then k < dh(P).

@ For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver,
Mathias, Silver, Full-miller, and also P(w)/fin (more on this later), we
have ¢ < 2h(P) < 2°.

@ For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc.,
we have w < dh(P) < c.
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Instead of maximal antichains of IP also open dense sets of P can be used.

Let opd(P) denote the filter generated by the sets open dense in P;
equivalently, D C P is in opd(PP) if and only if for each p € P there is
g < psuch that r € D for all r < gq.

h(P) = b(opd(P), opd(P),2) = add(opd(P))
b’(P) = b(opd(P), P, 3) = cov(opd(P))
o5’ (P) = d(opd(P), P, 3) = non(opd(P))
oh(P) = 0(opd(P), opd(P),2) = cof(opd(P))

h(P) = b(macs(P), macs(P), ¢ rer)
b’ (P) = b(macs(P), P, <ser)

0°(P) = o(macs(P), P, <)

0h(P) = o(macs(PP), macs(P), <rer)
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Let P be a tree forcings on 2¥ (or w® or [w]“). For a tree T € P, let
[p] :={x € 2% : x[n € p for each n € w}
the body of p (i.e., the set of branches through p).

Let p° denote the Marczewksi-null ideal associated to P

Definition

p° == {X C2¥:Vpc P3Iq < psuch that [g] N X = 0}
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[p] :={x € 2% : x[n € p for each n € w}

the body of p (i.e., the set of branches through p).

Let p° denote the Marczewksi-null ideal associated to P

Definition
p° == {X C2¥:Vpc P3Iq < psuch that [g] N X = 0}

cof(p°) < oh(P)

Wohofsky (KGRC) Dualizing h? Hejnice 2024 9/17



Let P be a tree forcings on 2¥ (or w® or [w]“). For a tree T € P, let
[p] := {x € 2¥ : x[n € p for each n € w}

the body of p (i.e., the set of branches through p).

Let p° denote the Marczewksi-null ideal associated to P

Definition
p° == {X C2¥:Vpc P3Iq < psuch that [g] N X = 0}

cof(p°) < oh(P)

non(p°) < 0h’(P)
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P(w)/fin is not an actual tree forcing, but let us treat the conditions as if
it were, define “bodies” of conditions, and define a “Marczewski-style
ideal”:
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P(w)/fin

P(w)/fin is not an actual tree forcing, but let us treat the conditions as if
it were, define “bodies” of conditions, and define a “Marczewski-style
ideal”:

For a € [w]¥, let (a) := {c € [w]¥ : ¢ C* a}.

Definition

pu® = {X C [w]* : ¥(a) 3(b) C (a) ((b) N X = 0)}

Va€ [w]¥IbC*a((byNX =0)
Vae[w]w3IbCa((b)nX =0)
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P(w)/fin

P(w)/fin is not an actual tree forcing, but let us treat the conditions as if
it were, define “bodies” of conditions, and define a “Marczewski-style
ideal”:

For a € [w]¥, let (a) := {c € [w]¥ : ¢ C* a}.

Definition

pu® = {X C [w]* : ¥(a) 3(b) C (a) ((b) N X = 0)}

Va€ [w]¥IbC*a((byNX =0)
Vae[w]w3IbCa((b)nX =0)

¢ < cof (pw®) < 0h
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r% (the Marczewski-null ideal for Mathias forcing)

...also called “Ramsey null” ideal or “nowhere Ramsey” ideal. ..

Lemma (Plewik? (where add(r®) = cov(r®) = b proved))

pu® =r

Wohofsky (KGRC) Dualizing h? Hejnice 2024 11/17



r% (the Marczewski-null ideal for Mathias forcing)

...also called “Ramsey null” ideal or “nowhere Ramsey” ideal. ..

Lemma (Plewik? (where add(r®) = cov(r®) = b proved))

Wohofsky (KGRC) Dualizing h? Hejnice 2024 11/17



O (the Marczewski-null ideal for Mathias forcing)

.. also called “Ramsey null” ideal or “nowhere Ramsey” ideal. ..

Lemma (Plewik? (where add(r®) = cov(r®) = b proved))

cof (r°) < oh

Also:

¢ < cof(r9) < oh(Mathias)
¢ < cof(s%) < oh(Sacks)

¢ < cof(£°) < oh(Laver)

¢ < cof(m®) < oh(Miller)
¢ < cof(v0) < op(Silver)
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Recall:

non(p°) < 05’ (P)

Therefore, we get the following:

non(pw?) <oh’ < ¢

i = — = — Ty
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Recall:

non(p°) < oh’(P)

Therefore, we get the following:

non(pw?) <oh’ < ¢

But, as usual for non-c.c.c. “tree” forcings (in fact, due to c-sized
antichains with disjoint bodies), we have:

non(pw®) = ¢

T ————— — Ty
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Recall:

non(p°) < ob’(P)

Therefore, we get the following:

non(pw?) <oh’ < ¢

But, as usual for non-c.c.c. “tree” forcings (in fact, due to c-sized
antichains with disjoint bodies), we have:

non pw

Corollary (the variant | dicussed with Alek)
Df)b =c

Wohofsky (KGRC) Dualizing h? Hejnice 2024 12/17



For those who are interested in fresh functions and/or can remember past
talks of mine about fresh function spectra etc.:

FRESH(P) C [H(P). 2b°(P)] reg-

Recall from some other talk (uses the base matrix theorem):
FRESH(P(w)/fin) = [b(P), ] reg-

Corollary (again, unnecessarily complicated)

Dhb:c
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Cohen forcing C

Let c® denote the ideal of nowhere dense subsets of 2v.

Lemma (from general lemma above)
cof(c?) < op(C) < ¢

In fact: cof(c®) = oh(C) 111777

Theorem (Fremlin?; Balcar-Herndndez-Hernandez-Hrusak?)
0h(C) = cof(M)
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Cohen forcing C

Let c® denote the ideal of nowhere dense subsets of 2v.

Lemma (from general lemma above)
cof(c?) < op(C) < ¢

In fact: cof(c®) = oh(C) 111777

Theorem (Fremlin?; Balcar-Herndndez-Hernandez-Hrusak?)
0h(C) = cof(M)

Hechler forcing: 9h(D) = ¢

Eventually different forcing: 9h(E) = ¢

...same for filter-Laver for analytic filter. ..

Random: cof(N) <oh(B) < ¢ ...so what is 2h(B)?
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Recall:

cof (p%) < oh(P) < |[{A C P: A is a maximal antichain}|

Is it consistent that cof(p°) < 0h(P) for some P?
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Thank you

Vienna, Augarten, 3rd December 2020
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Thank you

Thank you for your attention and enjoy the Winter School. . .

=
;»
|

Vienna, Old KGRC (Josephinum), 9th April 2020
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